Serverstats Server Module

For silEnT mod, an Enemy Territory Modification
Version 1.0

TABLE OF CONTENTS

1. BACKGIOUNG.uiiiiiiiieiiieieeie ettt ettt e e st e s be e s taeebe e st e ssbe e seesssaessteesseessesnseenseesssesnssesnsesnnens 4
I TS 112 -1 T 4
1.2.What it does and what it dOES NOt dO..........ccovuvriiieiiiiiieiiieeeeeceee et eeeae e e eeaaaaarraeeeeees 4
1.3.Database REeQUITEIMENTS.ccccueeieueeiiieeeiieeeiteeeiteeeetteesteeesteeesaseeessaeeessseessseesssseesssseessseeenssees 4
TLADBMS ...ttt et e e e e e e e a— e e e e b e e e e aa b e e e ee—taeeeeaaareeeaaateeeeenrrrararrareaaans 4
RSN 2251w (0] § 00 =1 1 [l <SRRI 4
1.6, CUSTOMMUIZALION. .. . vvvvurerererererereresesessresesssnnnsesssssnnnnnns 4
1.7 . VBTSIOMS. ..ceevveitieeeeeeeeeeetttieeee et eeeeettateeeeeeeeesesastanaaeeessssssstnnneseessssssssnnnesesssssssssnnneesesssssssssnnnnneesnes 5

2. CONTIGUIALION. c...eeuieeiieeiieeieeete ettt sttt e et e st e e te e st e e beesseessseessessseeseesssassaesssaeseessseenseesnseenseeennns 6
2.1.Configuring SIENT MO SEIVET........cecieierieierierieeieetesiee e ste et st seeste st e saeeesseeesaseesneeenaee 6
2.2.Configuring the Statistics MOAUIE..........cccueeiiiiriiiiiiieeeeeee e s e e 7

2.2.1.SQ1_dAtADASE......cccuveeeeiieeeieeeeit ettt e s e e ae e e be e e ate e e abe e e e eaabaaeeeeennraaaaean 7
2.2.2.8Q]_BNGINE......eiiiuiieiieiieeieerte et e et et e et e et e st e e te e et e et e e e b e e beesateesbeeesbaeeenbaeeesaaeennraean 7
e T | I 3 10 3 7 e [| PSPPSR 7
B e | I 10 3 1 5 10) o PRSP SRPRSPRRRPR 7
2.2.5.5Q]_USEIMAIME.ccctieieiieeeiieecieeectee ettt e e stteeeteeesteeesaaeeessseeessaeeesseeesssaeesssaeensseesnssaeenssneaenn 7
2.2.6.5Q1_PASSWOT.eciieiiieiiiiieeieet ettt te et e et e ste e et e e bt e st e esseesabaebaessbeeseesnsaesaeennsaeeennses 7
2.2.7.5Q1_deDUGLOGIILE. ...c.eeeieieeieeeeeee ettt en 7
2.2.8.5q1_truncdebUGLog.........ccocvieuiiriiiiieeieeteeiee ettt ettt sae e s b e s nta e e ennees 7
2.2.9.5Q]_10gEXOCULIONEIIMES.ceiiiiitieiierie ettt ettt ettt e sae e st e e bt e st e s beesabeesbeesabeeeeans 7
2.2, L0 ATACK AOATNS. .. e e e s e e e aneneeeeeenannnnnes 8
2.2 1 ATACK OAITIS. ceuueeeeeeeeeieeeeeeeeeeeeettee e eeeeeeeeetaennaeeeseeesseennnnaessssesseannnnaassssesseasnnneasssseeseennnn 8
2.2 12 8TACK CLASSES.c.ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 8
2.2 L3 TACK SO eeeeeeeeeeeeeeee et e e e ettt eeeee e e e e e et aa———aataee ettt a———————tan—aetanaaa et aernnans 8
2.2.14.SN0tS_IGNOTEIMISSES. ... ueeruveriieeieeniieeieerteerteesttesseessteesseesseesseesstessseesssessessssasssessssessseennes 8
B o 1 - el Gl 0] (el L SO SRR 8
2.2.16.tTACK_POSTHIONS. ...eiutiieiieeiieeieeiteet et e ste st e st e s teesatesaeesseesseesaeessseessaesnseesnssaeessseessnsseens 8
N 78 5 To 3 1 (o) o R 0 ¥ Lad Gl 1<) s =Y O USRS 8
2.2.18.tTaCK_ODJECIIUNS.eevieiieiiieeieeiteete ettt et ste e teesate e bt e ssaessbeessteesseesssesseesssaesssnseessnnens 8
2.2.19.41aCK_AYNAIMITES. ..cccutieeeiieeeiieceieeecteeecteeesteeeeteeeeteeesbeeessaeeesbeeessseeessseeesssssneessessnsseneeens 8
2.2.20.TACK _ CONSITUCTIDIOS. ... e e e s e e e eneneeeeeeeannnnennes 8
2.2.21.co0rdinates_ X AOCIIMIALS. . .ceteteeneeee et eeeettteeeee e e e e ettt e eeeeeeeeeteeeneaaesesseesenennnaeessesenaseenenasees 9
2.2.22.coordinates_y_deCimalS.........ccceeeeriierriieniieeriienieesieesreereesressseesteereesssessseesssaesssnseeesnnees 9
2.2.23.C00rAINAteS_Z AOCIIMIALS. ceeveuneeeeeeeeeeieeeeee e eeeeeeteeeeeeeeeeeeeseeaaeaeeesseeeseaennnssesenassenanaseesnnnns 9
2.2.24.C00rdINAteS_USEZIAYETS.cccuveerieriieeieeiieeiieesitesireestessseesseessseesseessseesssesssessssesssessssessseennes 9

3.DAtADASE ATCHITECTUIE. .. .vvvveiieiiiiiceiitteeeeee et eeee et e e e e e e ssaasbareeeeeeesssssssssneeseeessssssssenssnnes 10

3.1 BaASIC SEATISTICS. ceiieieieieieieieieieiiieieieieieieieieeeeeeeeeeeeeeeseeeseseseseseessesssssesesesesesesesesssssssesesesssssssnnnneesees 10
3.1.1.ConfiguratioNCONSIANLS.cc.eerveeierreerieritesieerteeteseestesetesaeestesseesseesesssesseensesssessesssesssesseens 11
S T B -1 1 (TSROt 11
208 G @) .15 (<0) 1 - F R SPRRRUSPPR 11
TR 0 0 - /<) USRS RPRRRRPPRRN 12
3.1.5.Pl1ayer_IN_GaAIM.....cccuieieiieeiieeeciiee et eeciteeecteeeeteeeeaeeesaaeeesabee s saeeesaeeesseeessaeessseesnsssannnnns 12
BL LB, ALLAS ...ttt e e e ettt e et e e e eaaaeeeeeaat e e e e aaraeeenbareeeeeeeeeeeennrarnrnan 12
3.1 7. ALTAS TN GAIMIC...eeeteeeeeeeee et e e e e ettt e eeeeeeeeeateanaaeesesesesaaennnaasesesannnesesnnnesesanesenannes 13
T S T K=Y 1 [SRR RPNt 13
3.1.9.SKIIIS TI GAIMIC. ittt eeeeeeeeeee e ee e e e ettt eeeeeeeeeeeaaaaeaeeseeseeanennaasesseesaannnnaasesseeeeennnnesans 13
B L L0.SKILLS .uveeeeeeiee ettt ettt eee e e et e e et e e e e ba e e e eeaaaeeeeeabaaeeenarareeeearaeeeennnaes 13
70 01 B 1 -1 0] 3 1o OO RO UU PSR RUUSURRRPR 14
3.1.12. WeAPONDALA.cceeeuirteeieiitieeeeiteeeeriteee e ettt e e sttt eeesarteeesearteeessnreeesssnnbaeeeeesssssssnnnnnnnnns 14
3.1.13.MEANSOFDEAtN........ccoiiiiiiiieiieeeeeee ettt e et e e e e e e e et e e e e e e e aaaaraareees 15
3.1.14.PlayerGameSUIMIMATY........c.cerverreerreerreerresiseesseessessseesssessseesssessssesssessssssesssssseessssaessnns 15

3.2 EXtONAOA SEATISTICS. e eeeeeieeeneeeeeeeeetteeeeeeeeeeeeeteuenaaeesesseesaaesnnaesssseeseennnnnaasesssesessnnnnaassessennesenenn 16

Serverstats Server Extension 2015-01-10 3/(29)

3. 2.1 PlayerCLaSS. ...ceueeeieeiieeieeete ettt ettt ettt ettt et st esab e s b e e at e et e ate e e ateeeas 17
3.2. 2. WBAPOMIS. ...ceieeuetteeeeiiteeeeeitteeeertteeeesuteeesesustteeessasteeeesssaaesasssaeeeasnseaeesannsbaeessasssnsnnnnsrnnaaes 17
32,3 CLaSSLS. ..ttt ettt et ettt et e bt e at e e b e e h e e e be e bt e e beeeateeabeeeaaesbaeean 17
3.2 4. DRALNS. ...ttt ettt et s a e a et e e he et e st e naeea 17
B2, 5. 0TS ettt ettt e st e be e st e e bt e st e e bt e s abe e beeenteeeans 18
32,6 POSIEION. c...eiiiieiiteeete ettt st st e e enbe e e snae e e e 18
3.2.7 HITREGIONS.eetiiiiiiiiii ittt ettt e st e e s era e e e s bbe e e e e e e e e e s ssnsssnaeaeeeeees 19
3.3 PICKUD StAtISTICS. .veitreeiieriieeiieeieeieeste ettt e sttt e et este e bt essaeebeessbeebeesssessseesssaessaessseesnnsseenn 20
B3 L PICKUD . ettt ettt ettt st e bt e at e st e et e e bt e ht e e be e aeeennee s 21
TR N 1<) 1 1 OO P PSRRI PPRRROPPRRINt 21
3.3.3. WEAPONPICKUP.teittiiieeieete ettt ettt ettt sttt et s st e s be e at e s abe e st e s seesaeesnneens 21
3. 4. Player POSITIONS. ...cccviiiuieeiieitieeieeciteeteesiteste et e steeteesateebeessseessaessseesseesssessseenssessseenssesnseenseens 22
34,1 PlayerPOSItION.ceotiiieeiteeieet ettt sttt st ettt s b e st e e s abe e e e araeeeaas 22
3.5.0DJECHIVE RUNS....cociieiiieieiieeiieeie et ettt et esteete et e sebe e st esbeesaesssaesseesssessssessseesseesssesseeenn 23
3.5, L 0D JECHIVE. ..ttt ettt ettt e bt e st e et e e at e e e eabt e e e nbaeeeans 24
3.5.2.0DJECHRUN.......eiiiiiiieeieeieeete ettt et e s te et e s teestee st e esaessseessaassseesassaeesassseesnsseeennn 24
3.0 DYNAIMILES.eeeiiiiiieeeeiteee ettt ettt e st e e e ab e e s e sabb e e e s bbae e s e rr e e e e e nbe e e e e e e eeeeeeeennns 25
3.6. 1. DYNAMULEPIANT......ccuiiiiiiiieeiecieeeeee ettt e e be e e st e e e e e saeensaeennaeean 26
3.6. 2. DYNAMITEATTIL .. .uutiiiiiiiieeieitee ettt et e e ettt e e e arteeseearreeesenraeesesnnateeeesnraeessennraeesesnnnnes 26
3.6.3.DYNAMItEDEfUSE. ...c.uvieiiiiiiiiieeceee et e b naae s 27
3.7.Construction and DeSIITUCTION.cceueriuterieriterte ettt ettt st et estessaee e s sabeeesabeeesaeeeeas 28
3.7. L CONSITUCTION. ...ueteeiiieiriieieiie ettt ettt et et e st e s be e s embe e e ssaeeesbeeebaeeemsaeeeeeennnneees 29

O T B LT i (el o) U RPRTRROPRR 29

Serverstats Server Extension 2015-01-10 4/(29)

1. Background

1.1. General

Serverstats server module is an extension to silEnT mod, an Enemy Territory game modification.
Enemy Territory is a free to play game created and released by SplashDamage as a sequel to Return
to Castle Wolfenstein, a game created by id Software.

The server statistics module implements server side game data gathering and warehousing in a
relational database. The module is designed to be able to use several different database managers.
Including SQLite3 and PostgreSQL. Extending the possibilities is possible in the future as long as
the licenses are compatible.

1.2. What it does and what it does not do

The module works only as a data collector. The module is not a replacement for the silEnT mod
player database.

1.3. Database Requirements

The serverstats module requires the following privileges to the database: CREATE TABLE,
CREATE INDEX, SELECT, INSERT and UPDATE. The module does not require any privileges
for deleting or dropping data. Also, the module does not enforce mixed case on table column names.
Do note that with all client connections to the databases.

1.4. DBMS

The module is compatible with SQlite3 and PostgreSQL DBMS. Client libraries to both of these are
statically linked and do not require you to install anything additional. In case of the PostgreSQL,
you need to have a configured PostgreSQL server to use this module.

1.5. Performance

The module is implemented with threading. This means that the interface facing the qagame, will
work in high speed and also, that multicore CPUs are recommended for taking full advantage of the
module.

1.6. Customization

The module does not require the database to be in any certain format. The database can be
customized to the user needs freely by adding new tables, indexes and triggers. Even altering
existing tables is possible. However, by doing customizations, users will take the risk that the
database can be changed by the future versions of the module and the changes may overlap with the
customizations. The module will not remove, by itself, any customizations.

Serverstats Server Extension 2015-01-10 5/(29)

1.7. Versions

The intent is to keep new modules and databases backward compatible to older versions of the
client software. The following table describes the versions when the compatibility gets broken.

Module Version Backwards Compatible Description of Change
1.0 0.9.0 -
In the table, the Backwards Compatible field has the value of the oldest silEnT mod version for
which this module is compatible.

Serverstats Server Extension 2015-01-10 6/(29)

2. Configuration
2.1. Configuring silEnT Mod Server

To enable the use of the statistics module, the server game must be configured for it. This is done
with "modules.cfg" file and by adding specific data block about the statistics module into that file.
The modules.cfg file is automatically read every time the server initializes the gagame game. A
block like the following needs to be added to the configuration file:

[statsmodule]
path = servermodules
file = statsmodule
config = statmodule.cfg
enabled = 1
* [statsmodule] ; This identifies the module that is configured.

* path ; This is the path to the directory where the module shared library (statsmodule.dll/so)
is located. This path is relative to the "fs_homepath\fs_game" directory. I.e. it is appended to
a path that begins from the directory where your gagame for silEnT mod is located.

* config ; This is the configuration file which is read by the statistics module. Do note that this
value can also include relative path to the file.

* enabled ; If this is set to 1, the module is enabled, if it is set to O it is disabled. This allows
enabling and disabling the module without making other changes to the configurations.

Serverstats Server Extension 2015-01-10 7/(29)

2.2. Configuring the Statistics Module

Serverstats module is configured with "key = value" pairs read from a configuration file that is
pointed to by the generic modules.cfg configuration. Commenting is done with ;' character. If the ';'
character appears anywhere in the configuration file, the rest of that line is ignored. The file name is
passed to the module from silEnT mod. The configuration accepts the following options.

2.2.1. sql_database

This option defines the name of the database the module is accessing. If SQLite3 is used, this value
is practically a file name and therefore, it can also contain relative path to another directory if
required.

2.2.2. sql_engine

This option defines the database engine that is used. Value can be either sqlite or postgresql. This
option must be defined. By default: "sql_engine = sqlite".

2.2.3. sql_hostaddr

This value defines the IP address of the database. This value is relevant for databases that use
sockets to communicate. With SQLite3, this value can be ignored in the configuration.

2.2.4. sql_hostport

This value defines the port in which the database is listening. Together with sql_hostaddr, these
define IP:port pair. This value is relevant for databases that use sockets to communicate. With
SQLite3, this value can be ignored in the configuration.

2.2.5. sgl_username

This value defines the user name used to authenticate with database server. With SQLite3, this value
can be ignored in the configuration.

2.2.6. sgl_password

This value defines the password used to authenticate with database serer. With SQLite3, this value
can be ignored in the configuration.

2.2.7. sql_debuglogfile

This value is optional. If set, all SQL actions are logged to a file with this name. Do note that the
file will grow very large very fast.

2.2.8. sql_truncdebuglog

If this value and sql_debuglogfile is set, the SQL debug log will be truncated each time the module
is loaded. This means every map change. Do note, that if this is set, errors that have happened a
long time before they are getting noticed, will not be found from the SQL debug log.

2.2.9. sql_logexecutiontimes

Boolean value (true/false) that defines if the SQL debug log will include SQL query execution
times. This requires sql_debuglogfile to be set. By default this is set to false.

Serverstats Server Extension 2015-01-10 8/(29)

2.2.10. track deaths

Boolean value (true/false) that defines if the player deaths are stored to the database. This is part of
the extended data collection.

2.2.11. track teams

Boolean value (true/false) that defines if the team changes and participation is tracked. This is part
of the extended data collection.

2.2.12. track classes

Boolean value (true/false) that defines if player class changes are tracked. This is part of the
extended data collection.

2.2.13. track_shots

Boolean value (true/false) that defines if shots are tracked. If enabled, every shot is stored into the
database. This information includes the shooter position, the target position and the target head view
angles. If the shot was made to "air" i.e. it did not hit any other player, the target position is the
position in the map where the shot trace ended. It is possible to disable storing misses with
"shots_ignoremisses" boolean.

2.2.14. shots_ighoremisses

Boolean value (true/false) that defines if missed shots are tracked. Requires "track_shots" to be set.
This option exists to reduce the stored information to the database, if shots are collected, but misses
are not interesting for the use case.

2.2.15. track_pickups

Boolean value (true/false) that defines if items picked up by players are inserted to the database.

2.2.16. track_positions

Boolean value (true/false) that defines if player positions are collected into the database. The
interval is configurable between 1 seconds to any large value.

2.2.17. position_track_interval

An integer value that defines the position tracking interval in seconds. Do note that interval shorter
than 1 second is not possible.

2.2.18. track_objectruns

Boolean value (true/false) that defines if object runs are stored into the database.

2.2.19. track_dynamites

Boolean value (true/false) that defines if dynamite plants on objectives is stored into the database.

2.2.20. track constructibles

Boolean value (true/false) that defines if engineering for building objectives and any damage to
destroy objectives is tracked.

Serverstats Server Extension 2015-01-10 9/(29)

2.2.21. coordinates x decimals

An integer value that defines how many decimals are stored for the X coordinate positions. If more
decimals are stored, the database size increases more through the Position table. By default this
value is 0, which is still enough to compare positions against command map with good accuracy. If
the value is set to a negative integer, the rounding is done on the left side of the decimal point.

2.2.22. coordinates_y_decimals

An integer value that defines how many decimals are stored for the Y coordinate positions. If more
decimals are stored, the database size increases more through the Position table. By default this
value is 0, which is still enough to compare positions against command map with good accuracy. If
the value is set to a negative integer, the rounding is done on the left side of the decimal point.

2.2.23. coordinates z decimals

An integer value that defines how many decimals are stored for the Z coordinate positions. If more
decimals are stored, the database size increases more through the Position table. By default the
database stores the Z coordinates as command map layer numbers. Most use cases would look at the
coordinates from top down where the accurate Z coordinate is not needed. If the value is set to a
negative integer, the rounding is done on the left side of the decimal point.

2.2.24. coordinates_usezlayers

A boolean value (true/false) that defines if the Z coordinate positions are stored as command map
layer numbers. By default this is set to true as this reduces significantly the amount of variations in
the Position table and most use cases look at the positions from top down direction.

Serverstats Server Extension 2015-01-10 10/(29)

3. Database Architecture

3.1. Basic Statistics

The database is divided into basic and extended statistics. What is collected is configurable. The
extended part can grow the database with great speed. The basic statistics are the minimal collected
data when enabled. The following displays the tables and describes them with detail.

Alias

Serverstats Server Extension 2015-01-10 11/(29)

3.1.1. ConfigurationConstants

The database has some information that may be version dependent. This table provides the version
dependent information and how to manage this data. The TimeOffset field tells the offset seconds to
add to various second times used by many of the game data tables, to convert the time into seconds
since epoch. The reason why this offset is used is because of the way the game handles calendar
time, without overflowing integer types. The Since field can be used to determine which database
version has been used for which game. The Game table also includes a time stamp field and the
Game table is linked to all entries which may use seconds to determine time.

Field Type Description
DB_VER INT The database version.
Since DATETIME | When this version has been used the first time.
TimeOffset INT The number of seconds to add to get seconds since epoch.
3.1.2. Game

The Game table holds single games. Almost all collected data is tied to games. Notable thing about
the table is the Date field. Using this field it is possible to compare against the
ConfigurationConstants.Since field and see under which version the data related to this game is

stored.

Field Type Description

ID INT Integer value for the sole purpose to uniquely identify the games.

Map_ID INT Foreign key constraint to MapInfo.ID.

Date TIMESTAMP |This is the calendar time when the game was created to the database.

Started INT Seconds when the game started.

Length INT Seconds the game lasted.

Winner INT The team that won the game, ot the ending condition. Human
readable interpretation of this value is found from the Completions
table.

FullLength |INT Seconds the map should have lasted if it was played the full time.

GameType |INT This is the game type. This value is g_gametype value of the map.

g_dmg INT The g_dmg setting of the map. This value can be interesting for
evaluating hits.

3.1.3. Completions

This is a supportive table which includes all different Game.Winner values and the human readable
explanations. The module fills this table to the database on every start up.

Field Type Description

Winner INT The game completion condition identifier.

Name VARCHAR |Human readable explanation of the condition.

Serverstats Server Extension

3.1.4. Player

The Player table is one of the most central tables in the database. This table is linked to almost
everything that is collected. The silEnT GUID is automatically updated in the database if the silEnT
mod can itself link the new GUID to the old GUID.

2015-01-10 12/(29)

Field Type Desription

ID INT Integer value for the sole purpose of being primary key.

SGUID CHAR(32) |32 character player silEnT GUID. Be sure not to reveal the full
GUID publicly to avoid issues with GUID spoofing.

IsBot BOOL 1 if the player is server bot. 0 otherwise.

AsAllied INT Time in seconds as allied.

AsAxis INT Time in seconds as axis.

TotalTime |INT Total time in seconds the player has been on the server. This time
includes time from warmups and all non gaming states.

Protocol VARCHAR | The protocol version the client game uses.

ETVersion |VARCHAR | The game version the player is using, as reported by the player

without binary checks.

3.1.5. Player_In_Game

Table stores all the team changes during the games done by players. Players can have several

records for each played game. Note that when the player joins the server, he automatically joins the

spectator team.

Field Type Description
ID INT Integer value for the sole purpose to uniquely identify the record.
Game_ID INT Foreign key constraint to Game table to uniquely identify the game.
Player_ID INT Foreign key constraint to Player table to uniquely identify the player.
Team INT The team, this is also foreign key constraint to Teams table.
Joined INT Seconds since the game start when the player joined the team.
LeftTeam INT Seconds since the game start when the player left the team.

3.1.6. Alias

The Alias table stores every alias any player has used while on the server. This includes warmup

times and as spectator. Each game also stores which aliases were used and for how long. Notable is,

that even a single color code change creates a new alias for the player.

Field Type Description
ID INT Integer value for the sole purpose to uniquely identify aliases.
Player_ID INT Foreign key constraint that uniquely identifies the player.
Name VARCHAR | The name of the player. This includes the color codes.
TimeUsed INT Number of seconds this alias has been used by this player.

Serverstats Server Extension

3.1.7. Alias_In_Game

2015-01-10 13/(29)

The Alias_In_Game table connects aliases to games.

Field Type Description
ID INT Integer value for the sole purpose to uniquely identify the record.
Alias_ID INT Foreign key constraint to Alias table to uniquely identify the alias.
Game_ID INT Foreign key constraint to Game table to uniquely identify the game.
TimeUsed INT Time in seconds how much this alias was used during the game.

3.1.8. Teams

This is a supportive table that links different team identifiers to human readable texts. The module

fills this table to the database on startup.

Field Type Description
Team INT Integer value that identifies the team.
Name VARCHAR |Human readable explanation to team.

3.1.9. Skills In_Game

This table collects player skills (XP) on each game. For every game there will be at least two

records. One for the time when the player joins the game and one for the time the game ends or the

player leaves the game. Also, a new record is added every time a player gains a skill upgrade. In

case of upgrades, the Time field tells the second when the skill upgrade came to effect.

Field Type Description
ID INT Integer value for the sole purpose to uniquely identify the record.
Game_ID INT Foreign key constraint to Game table to uniquely identify the game.
Player_ID INT Foreign key constraint to Player table to uniquely identify the player.
Skill INT The skill this record describes. Also a foreign key constraint to Skills

table.

Time INT Seconds since the game start when this record came to effect.
Level INT The skill level the player is on.
XP INT The amount of XP the player has on this skill.

3.1.10. Skills

This is a supportive table that has all the possible skills in the game and their human readable

names. This table is automatically filled by the module on every game startup.

Field Type Description
Skill INT The skill identifier.
Name VARCHAR |Human readable name for the skill.

Serverstats Server Extension

3.1.11. Mapinfo

This table holds details of specific maps. This table requires that the raw map names, i.e. the bsp

2015-01-10 14/(29)

names of the maps are unique. Otherwise, some details may be interpreted wrong per map. None of
the stored information is vital though. The ExtendLeft, ExtendRight, ExtendBottom and
ExtendTop fields are comparable to coordinate positions with extended statistics.

Field Type Description
ID INT Integer value for the sole purpose to uniquely identify record.
RawName VARCHAR | The bsp -name of the map. The value must be unique with the rows.
DecoratedName | VARCHAR | The long name of the map. As seen at the map vote screen.
ExtendLeft FLOAT Command map extends to left.
ExtendRight FLOAT Command map extends to right.
ExtendBottom |FLOAT Command map extends to bottom.
ExtendTop FLOAT Command map extends to top.

3.1.12. WeaponData

This table holds individual weapon statistics of a game.

Field Type Description
Game_ID INT Foreign key constraint to Game.ID to uniquely identify the game.
Player_ID INT Foreign key constraint to Player.ID to uniquely identify the player.
MeansOfDeath | INT Foreign key constraint to MeansOfDeath.MeansOfDeath.
HeadShots INT Number of head shots with the weapon.
Torso INT Number of hits to the torso.
ArmShots INT Number of arm hits with the weapon.
LegShots INT Number of leg hits with the weapon.
Attempts INT Number of time the weapon was fired.
Kills INT Number of kills made with the weapon.
Deaths INT Number of deaths caused by the weapon.
BaseDamage |INT Damage to health with this weapon. When hit to the body. For arm
and leg shots the damage may be reduced based on the g_dmg setting.

Serverstats Server Extension 2015-01-10 15/(29)

3.1.13. MeansOfDeath

This is a supportive table that links identifying MeansOfDeath integers to human readable texts.

Field Type Description
MeansOfDeath | INT Integer value to uniquely identify the means of death.
Name VARCHAR |Human readable name for the death.

3.1.14. PlayerGameSummary

This table collects summaries of players in games. There is one row fir every player that
participated in one game. The Game_ID and Player_ID columns together form the table primary

key.

Field Type Description
Game_ID INT Foreign key constraint to Game.ID.
Player_ID INT Foreign key constraint to Player.ID.

AsAxis INT Seconds the player played for the axis team.
AsAllied INT Seconds the player played for the allied team.
AsSpec INT Seconds the player sat in spectators.
DamageGiven INT Damage inflicted to enemy team members.
DamageReceived INT Damage received from enemy team members.
TeamDamageGiven INT Damage inflicted to team members.
TeamDamageReceived | INT Damage received from team members.

Serverstats Server Extension 2015-01-10 16/(29)

3.2. Extended Statistics

Extended statistics provide many separately configurable statistics collection options. These include
deaths, team joins, class choices and shots. The Game and Player tables are described in the basic
statistics.

Serverstats Server Extension 2015-01-10 17/(29)

3.2.1. PlayerClass

This table holds all class changes players have done. This is updated only when players spawn to
the game, and class, primary weapon or secondary weapon has changed.

Field Type Description
ID INT Integer value for the sole purpose to uniquely identify the record.
Game_ID INT Foreign key constraint to Game.ID to uniquely identofy the game.
Player_ID INT Foreign key constraint to Player.ID to uniquely identify the player.
LevelTime INT Milliseconds since the map start for this spawn/change.
Class INT Foreign key constraint to Classes.Class table to identify the class.
PrimaryWeapon |INT Foreign key constraint to Weapons.Weapon to identify the weapon.
SecondaryWeapon | INT Foreign key constraint to Weapons.Weapon to identify the weapon.

3.2.2. Weapons

This is a supportive table. It links all weapon numbers to weapon names. This data should not be
confused with MeansOfDeath or WeaponStats that also use weapon names. These are all and
strictly all weapons unlike the other mentioned datas that are mixed/combined information.

Field Type Description
Weapon INT Unique integer value for every weapon.
Name VARCHAR |Human readable name for the weapon.

3.2.3. Classes

This is a supportive table that links all class identifiers to human readable class names.

Field Type Description
Class INT Unique integer value for every class.
Name VARCHAR |Human readable name for the class.

3.2.4. Deaths

Table collects all player kills and deaths. However, sometimes the killer might not be another
player. For these cases, the Player table includes two predefined constant players: none and world.

Field Type Description
ID INT Integer value for the sole purpose to uniquely identify the record.
Game_ID INT Foreign key constraint to Game.ID to identiy the game.
Killer_ID INT Foreign key constraint to Player.ID to identify the killer.
Victim_ID INT Foreign key constraint to Player.ID to identify the victim.
MeansOfDeath | INT Foreign key constraint to MeansOfDeaths.MeansofDeath to identify

how the kill was made.

Teamkill INT Non zero integer if the death was a teamkill. Otherwise it is 0.
LevelTime INT Milliseconds from map start when the death happened.

Serverstats Server Extension

3.2.5. Shots

2015-01-10 18/(29)

This table can store every shot made in a game. This data can be used to create heat maps or any

deeper analysis of player shots. If enabled, this data will consume space with great speed.

Field Type Description

ID INT Integer value for the sole purpose to uniquely identify this record.

Game_ID INT Foreign key constraint to Game.ID to identiy the game.

Player_ID INT Foreign key constraint to Player.ID to identify the shooter.

Target_ID INT Foreign key constraint to Player.ID to identify the target. If the
target is None or World pre-defined constant, the shot missed all
players.

LevelTime INT Milliseconds from the map start when the shot was fired (by server).

MeansOfDeath INT Foreign key constraint to MeansOfDeaths.MeansofDeath to
identify the method of attack.

AttackerPos INT Foreign key constraint to Position.ID.

TargetPos INT Foreign key constraint to Pesition.ID.

Victim_ViewA_UD | FLOAT | The Up/Down view angle of the victim if hit. 0.0 if the shot missed
all players.

Victim_ViewA_LR |FLOAT |The Left/Right view angle of the victim if hit. 0.0 if the shot missed
all players.

Victim_ViewA_R |FLOAT The Roll view angle of the victim if hit. 0.0 if the shot missed all
players.

Region INT Foreign key constraint to HitRegions.Region to identify where the
shot hit.

Damage INT If the shot hit a player, the exact damage that was inflicted to the

target.

3.2.6. Position

Position table is used to store coordinate positions. One row in the Position table can be referenced

by many rows in many tables. The intent of the Position table is to reduce space requirements in the

long run. In time it becomes more and more likely that the same positions get used repeatedly. The

columns Pos_X and Pos_Y are used to automatically create an index to the table. This index is very

important and without it, the execution times of most actions will sky rocket.

Field Type Description
ID INT Integer value for the sole purpose to uniquely identify the record.
Pos_X FLOAT The X coordinate position.
Pos_Y FLOAT The Y coordinate position.
Pos_Z FLOAT The Z coordinate position.

Serverstats Server Extension 2015-01-10 19/(29)

3.2.7. HitRegions

This is a supportive table that links different hit regions to human readable names.

Field Type Description

Region INT Integer value that identifies the hit region.

Name VARCHAR |Human readable name for the hit region.

Serverstats Server Extension 2015-01-10 20/(29)

3.3. Pickup Statistics

Pickup statistics are part of the extended data collection. All items players pick up can be collected
to the database. The tables Player, Weapons and Game are described in the basic statistics.

Serverstats Server Extension

2015-01-10

3.3.1. Pickup
This table collects all pickups that do not have specialized tables.
Field Type Description
ID INT Integer value for the sole purpose to uniquely identify the record.
Game_ID INT Foreign key constraint to Game.ID.
Player_ID INT Foreign key constraint to Player.ID.
LevelTime INT Milliseconds from the map start.
Item INT Foreign key constraint to Items.Item.
Position_ID |INT Foreign key constraint to Pesition.ID.
3.3.2. Item
This is a supportive table that links item numbers to human readable names.
Field Type Description
[tem INT Unique integer value to identify the item.
Name VARCHAR |Human readable name for the item.

3.3.3. WeaponPickup

This table collects all weapon pickups.

Field Type Description
ID INT Integer value for the sole purpose to uniquely identify the record.
Game_ID INT Foreign key constraint to Game.ID.
Player_ID INT Foreign key constraint to Player.ID.
LevelTime INT Milliseconds from the map start.
Weapon INT Foreign key constraint to Weapons.Weapon.
Position_ID |INT Foreign key constraint to Position.ID.

21/(29)

Serverstats Server Extension 2015-01-10 22/(29)

3.4. Player Positions

Player positions can be collected to the database. The interval can be configured only in seconds.

PlayerPosition
Game - Player
1D IMT 1D INT
Map_ID INT (FK) S E::rjz ll:: iFFE]; ==]I SGUID CHAR(32)
Date TIMESTAMP I e T I isbot BOOL
Started INT _W__JI e e — — — +#|AsAlied INT
Length INT W AsAXis INT
Winner INT (FK) lL____l TotalTime INT
FullLength INT # Protocol VARCHAR(45)
GameType INT Position ETVersion VARCHAR(45)
g_dmg INT 1D INT
Fos_X FLOAT
FPos_Y FLOAT
Pos_Z FLOAT
3.4.1. PlayerPosition
This table collects all the positions.
Field Type Description
ID INT Integer value for the sole purpose to uniquely identify the record.
Game_ID INT Foreign key constraint to Game.ID to identify the game.
Player_ID INT Foreign key constraint to Player.ID to identify the player.
LevelTime INT Milliseconds from the map start.
Position_ID |INT Foreign key constraint to Pesition.ID.

Serverstats Server Extension 2015-01-10 23/(29)

3.5. Objective Runs

Objective runs are runs where a single player carries one objective. This objective can be gold or
documents for example.

Serverstats Server Extension

3.5.1. Objective

The objective table is used to store all objectives of all maps. This table is referenced always when
something related to objectives is stored into the database.

2015-01-10 24/(29)

Field Type Description

ID INT Integer value for the sole purpose to uniquely identify the record.

Map_ID INT Foreign key constraint to Map.ID to identify the map.

Team INT Foreign key constraint to Teams.Team to identify the object
target team.

Name VARCHAR | Uniquely identifying name for the object. There can not be more
than one objective with the same Map_ID, Team and Name
values.

DecoratedName |VARCHAR | Publicly shown name for the objective. This looks better on
outputs than the Name value.

Pos_X FLOAT The X coordinate of the objective when put to map in the
beginning.

Pos_Y FLOAT The Y coordinate of the objective when put to map in the
beginning.

Pos_Z FLOAT The Z coordinate of the objective when put to map in the
beginning.

Moveable BOOL If the objective can be moved from its original position, this is a
positive value or true, otherwise zero or false.

3.5.2. ObjectRun

This table stores all runs made while carrying an objective. The stored run distance is updated on

every server frame while running (not to database).

Field Type Description
ID INT Integer value for the sole purpose to uniquely identify the record.
Objective_ID |INT Foreign key constraint to Objective.ID.
Game_ID INT Foreign key constraint to Game.ID.
Player_ID INT Foreign key constraint to Player.ID.
RunDistance |FLOAT The total amount of traveled length between coordinate points.
RunStart INT Millisecond from the map start when player grabbed objective.
RunEnd INT Milliseconds from map start when the player dropped objective.
RunStartPos INT Foreign key constraint to Pesition.ID.
RunEndPos INT Foreign key constraint to Pesition.ID.
Delivered BOOL True(or positive value) if the objective was delivered.

Serverstats Server Extension 2015-01-10 25/(29)

3.6. Dynamites

Dynamite drops, plants and defuses can be collected to the database, if they are done on objectives.
The tables Objective and Position are described in Object Runs.

Serverstats Server Extension

3.6.1. DynamitePlant

2015-01-10 26/(29)

This table stores every dynamite drop and plant that can influence an objective. The dynamite is
dropped by one player, but it can be armed and defused by multiple players. Information of these
actions is collected to DynamiteArm and DynamiteDefuse tables.

Field Type Description

ID INT Integer value for the sole purpose to uniquely identify the record.

Objective_ID |INT Foreign key constraint to Objective.ID to identoy the object.

Game_ID INT Foreign key constraint to Game.ID to identify the game.

Position_ID INT Foreign key constraint to Pesition.ID. This position tells the
coordinate position of the dynamite.

DroppedBy INT Foreign key constraint to Player.ID. This tells which player dropped
the dynamite.

DropTime INT Milliseconds from the map start when the dynamite was dropped.

Armed BOOL True (positive value) if the dynamite was armed. O or false
otherwise.

ArmTime INT Milliseconds from map start when the dynamite was armed.

Defused BOOL True (positive value) if the dynamite was defused before explosion.
0 or false otherwise.

DefuseTime |INT Milliseconds from the map start when the dynamite was defused.

Exploded BOOL True (positive value) if the dynamite exploded. 0 or false otherwise.

3.6.2. DynamiteArm

This table stores all actions to arm dynamites on objectives. Even if the dynamite didn't get fully

armed. Each continuous use of pliers on the dynamite is stored as a single row. A completely armed

dynamite can be constructed from several rows.

Field Type Description
ID INT Integer value for the sole purpose to uniquely identify the record.
Dynamite_ID |[INT Foreign key constraint to DynamitePlant.ID.
Player_ID INT Foreign key constraint to Player.ID.
StartTime INT Milliseconds from the map start when the player started using pliers

on the dynamite.

EndTime INT Milliseconds from the map start when the player stopped using pliers.
Amount INT The amount of health points added to the dynamite.

Serverstats Server Extension 2015-01-10 27/(29)

3.6.3. DynamiteDefuse

This table stores all defusing actions done to armed dynamites. One defuse can consist of several
players defusing it or one player defusing it in several parts. Do note that health required for
dynamite arming and defusing may not be equal.

Field Type Description
ID INT Integer value for the sole purpose to uniquely identify the record.
Dynamite_ID |INT Foreign key constraint to DynamitePlant.ID.
Player_ID INT Foreign key constraint to Player.ID.
StartTime INT Milliseconds from the map start when the player started using pliers

on the dynamite.

EndTime INT Milliseconds from the map start when the player stopped using pliers.

Amount INT The amount of dynamite health defused.

Serverstats Server Extension 2015-01-10 28/(29)

3.7. Construction and Destruction

The database can store all construction actions to map objectives and also, all destructive actions to
map objectives excluding destructing movers such as tanks and trucks.

Serverstats Server Extension 2015-01-10 29/(29)

3.7.1. Construction

This table stores all engineering actions done to objectives. Including fixing movers. One fully
constructed object may be constructed in several parts. Table stores also those construction acts that
do not result in a fully constructed object.

Field Type Description

ID INT Integer value for the sole purpose to uniquely identify the record.

Objective_ID |INT Foreign key constraint to Objective.ID.

Game_ID INT Foreign key constraint to Game.ID.

Player_ID INT Foreign key constraint to Player.ID.

ObjectivePos |INT Foreign key constraint to Pesition.ID.

StartTime INT Milliseconds from map start when the player started using plier.

EndTime INT Milliseconds from map start when the player stopped one continuous
use of pliers to the objective.

Amount INT The amount of health the player engineered into the objective.

Completed BOOL 1 or true if the objective was completed with this engineering act, 0 or
false otherwise.

3.7.2. Destruction

This table holds all destruction acts with any weapons to all objectives, apart from movers such as
tanks or trucks.

Field Type Description

ID INT Integer value for the sole purpose to uniquely identify the record.

Objective_ID |INT Foreign key constraint to Objective.ID.

Game_ID INT Foreign key constraint to Game.ID.

Player_ID INT Foreign key constraint to Player.ID.

ObjectivePos | INT Foreign key constraint to Pesition.ID.

PlayerPos INT Foreign key constraint to Pesition.ID. This is the player position at the
very moment of destruction. Not the position of the satchel drop for
example.

MeansOfDeath | INT Foreign key constraint to MeansOfDeath.MeansOfDeath.

Amount INT The amount of health that was taken.

LevelTime INT Milliseconds from map start when damage was made.

Destroyed BOOL 1 or true if the objective was destroyed by this action, 0 or false
otherwise.

	1. Background
	1.1. General
	1.2. What it does and what it does not do
	1.3. Database Requirements
	1.4. DBMS
	1.5. Performance
	1.6. Customization
	1.7. Versions

	2. Configuration
	2.1. Configuring silEnT Mod Server
	2.2. Configuring the Statistics Module
	2.2.1. sql_database
	2.2.2. sql_engine
	2.2.3. sql_hostaddr
	2.2.4. sql_hostport
	2.2.5. sql_username
	2.2.6. sql_password
	2.2.7. sql_debuglogfile
	2.2.8. sql_truncdebuglog
	2.2.9. sql_logexecutiontimes
	2.2.10. track_deaths
	2.2.11. track_teams
	2.2.12. track_classes
	2.2.13. track_shots
	2.2.14. shots_ignoremisses
	2.2.15. track_pickups
	2.2.16. track_positions
	2.2.17. position_track_interval
	2.2.18. track_objectruns
	2.2.19. track_dynamites
	2.2.20. track_constructibles
	2.2.21. coordinates_x_decimals
	2.2.22. coordinates_y_decimals
	2.2.23. coordinates_z_decimals
	2.2.24. coordinates_usezlayers

	3. Database Architecture
	3.1. Basic Statistics
	3.1.1. ConfigurationConstants
	3.1.2. Game
	3.1.3. Completions
	3.1.4. Player
	3.1.5. Player_In_Game
	3.1.6. Alias
	3.1.7. Alias_In_Game
	3.1.8. Teams
	3.1.9. Skills_In_Game
	3.1.10. Skills
	3.1.11. MapInfo
	3.1.12. WeaponData
	3.1.13. MeansOfDeath
	3.1.14. PlayerGameSummary

	3.2. Extended Statistics
	3.2.1. PlayerClass
	3.2.2. Weapons
	3.2.3. Classes
	3.2.4. Deaths
	3.2.5. Shots
	3.2.6. Position
	3.2.7. HitRegions

	3.3. Pickup Statistics
	3.3.1. Pickup
	3.3.2. Item
	3.3.3. WeaponPickup

	3.4. Player Positions
	3.4.1. PlayerPosition

	3.5. Objective Runs
	3.5.1. Objective
	3.5.2. ObjectRun

	3.6. Dynamites
	3.6.1. DynamitePlant
	3.6.2. DynamiteArm
	3.6.3. DynamiteDefuse

	3.7. Construction and Destruction
	3.7.1. Construction
	3.7.2. Destruction

